
Large technology and consulting firm sees 20%
response time improvement, reduced risk of
failures with StormForge
Initial testing reveals massive potential improvements for cloud-native
app optimization

As a global technology and consulting firm helping clients move to cloud-native architectures and DevOps
practices, balancing trade-offs between application performance and cost is always top-of-mind. As the
lead DevOps engineer for a large technology consulting organization told us recently, “If you want to create
a highly available, highly scalable solution, which pretty much all of our clients do, there’s always a cost/
value trade-off to that. If we can optimize our customers’ apps to run leaner, faster, and more efficiently,
that’s a great benefit to our clients.”

That’s why the team decided to look at StormForge. Testing
with a simple front-end application, the team saw significant
response time improvement of 20% and also identified a number
of unstable configurations that would have likely resulted in
application downtime had they been deployed to production.

Experiment setup
The team began testing with a simple front-end UI app running on an OpenShift cluster. They used Locust
for performance load testing, with a run time of 3 minutes and 5,000 users (500 per second).

For simplicity, they optimized for two primary Kubernetes parameters - CPU and memory - with goals of
improving 95th percentile response time and identifying configurations that were unstable and would likely
fail in production.

With initial settings of 100 m CPU and 128 Mi memory, the starting performance test benchmark measured
95th percentile response time at 35ms.

“We were impressed. We were
quickly able to see the value of
running StormForge against
this application.”

 We found installation and startup to be very quick and easy.
 Installing StormForge on the OpenShift cluster went very smoothly.
It was a simple command to install it all. The range of examples was also
great, allowing us to quickly jump in and get started.”

Case Study

Results
After running the StormForge experiment, the
team chose optimized settings of 187 m CPU and
61 Mi memory. This allowed them to improve
95th percentile response time from 35 to 28
ms, an improvement of 20%. During the course
of their testing, StormForge also identified many
failed configurations that were filtered out
of their configuration options. Finding failures
during performance testing helps to identify
and avoid configurations that are likely to be
unstable in production.

Recommendations
Asked to describe their learnings and recommendations to other organizations getting started with
StormForge, the team provided this feedback:

•	 Choose a small number of trials to start. That will ensure everything is working smoothly and
ultimately result in faster time to value.

•	 Choose a relatively broad range for your parameters. Allow the machine learning to do its
work and home in on the optimal app configuration.

•	 Use the parameter drill-downs to analyze and explore. This will help you better understand
your application and how each parameter affects performance.

•	 Perform both before and after testing. Benchmark performance before starting to experiment
and then run the same test after to compare and objectively understand the benefits.

©2021 StormForge. All rights reserved.

About StormForge
StormForge is changing the way organizations approach application performance.

We combine cloud-native performance testing with application optimization powered by
machine learning to proactively improve application performance, stability, and efficiency.
StormForge lets you release with confidence to accelerate your move to cloud native and ensure
success of your digital transformation while efficiently managing costs.

Performance bench test results

Locust performance test parameters

Run time: 3 minutes
Users: 5,000 (500 per second)

Original settings

CPU: 100 m
Memory: 128 Mi

Results:

95%tile response time: 35 ms

Optimized settings

CPU: 187 m
Memory: 61 Mi

Results:

95%tile response time: 28 ms

